

Gap Between Randomization Trial and Real Practice

Andrejs Erglis, MD, PhD, FESC, FACC Latvian Centre of Cardiology, Pauls Stradins Clinical University Hospital University of Latvia Riga, LATVIA

Disclosures of Conflict of Interest

Speaker's name: Andrejs Erglis

☑ I have the following potential conflicts of interest to report:

 Research contracts (Abbott Vascular, Boston Scientific)
Consulting, Speakers Bureau (Abbott Vascular, Boston Scientific, Medtronic, Cordis J&J, Biosensors)

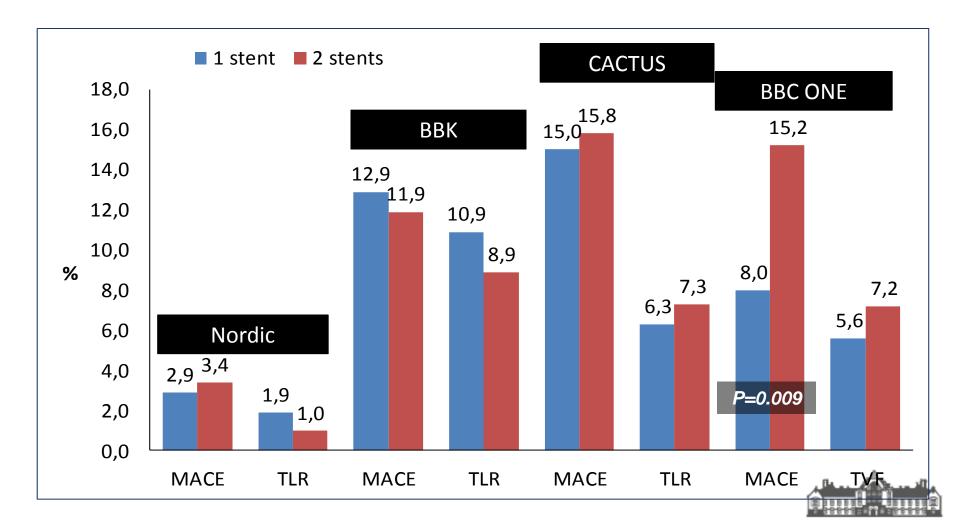
Employment in industry

□ Stockholder of a healthcare company

Owner of a healthcare company

 \Box Other(s)

 \Box I do not have any potential conflict of interest



Introduction

- There is marked variability in the morphology of coronary bifurcation lesions.
- The variability includes vessel size (MB and SB), lesion location, eccentricity, length, morphology, and SB takeoff angle.
- The research methodology used in the randomized clinical trials does not simulate all the questions asked in real clinical practice

MACE and TLR in randomized clinical trials (RCT)

Steigen TK et al. Circulation. 2006;114:1955-1961 Ferenc M et al. Eur Heart J 2008; 29: 2859–2867 Colombo A et al. Circulation. 2009;119:71–78 Hildick-Smith D et al. Circulation. 2010;121:1235-1243

RCT: Keep it simple!

- There is no statistical difference in main vessel (MV) or side branch (SB) restenosis or target vessel revascualrization (TVR) between provisional stenting and elective double stenting.
- There is no statistical difference in stent thrombosis between provisional stenting and elective double stenting
- The NORDIC and BBC ONE trials showed increased procedure time and contrast use with elective double stenting compared to provisional stenting while the CACTUS and BBK trials did not.
- The NORDIC and BBC ONE trials showed higher rate of post-procedure cardiac biomarker elevation in the elective double stenting arm but no difference in MI at follow-up.

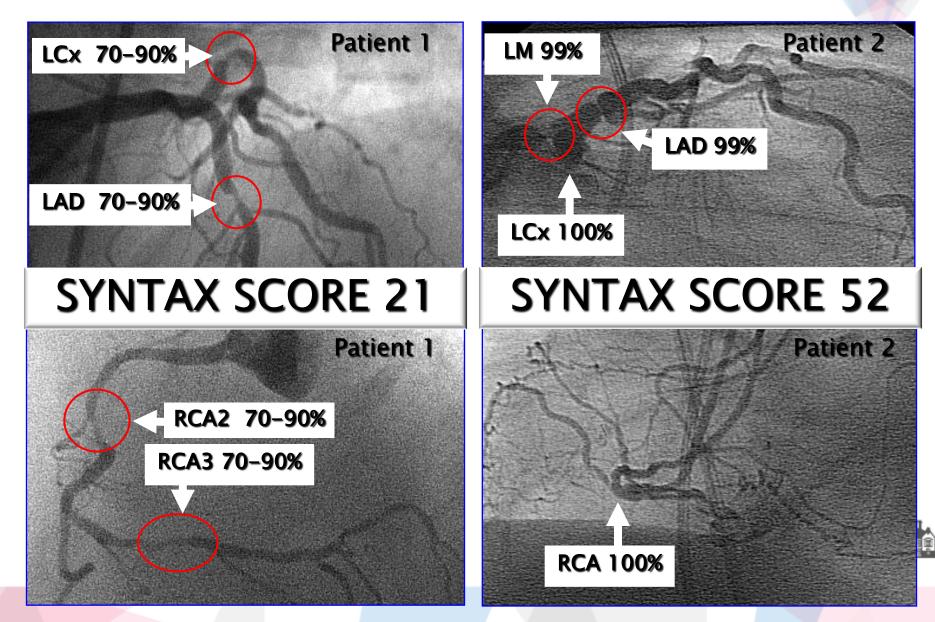
Steigen TK et al. Circulation. 2006;114:1955-1961 Ferenc M et al. Eur Heart J 2008; 29: 2859–2867 Colombo A et al. Circulation. 2009;119:71–78 Hildick-Smith D et al. Circulation. 2010;121:1235-1243

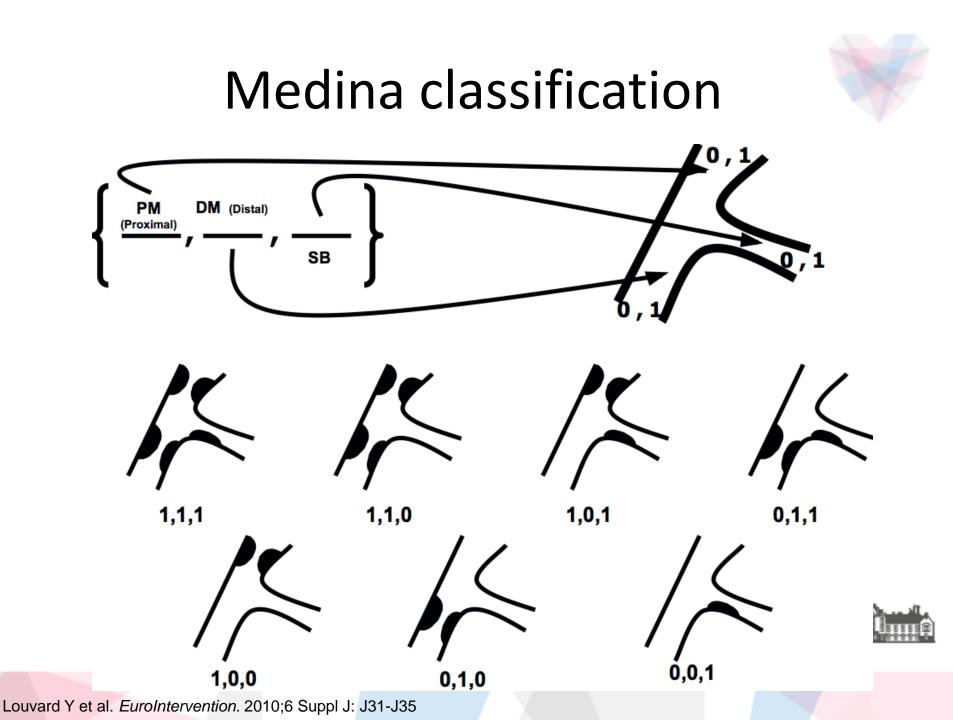
Lesions treated in RCT

	NORDIC ⁷		BBK^8		CACTUS ⁹		BBC-ONE ¹⁰	
Study	Elective $(N = 206)$	Provisional $(N = 207)$	Elective $(N = 101)$	Provisional $(N = 101)$	Elective $(N = 177)$	Provisional $(N = 173)$	Elective $(N = 250)$	Provisional $(N = 250)$
Bifurcation morphology								
Medina 1,1,1	NA		30.7%	35.6%	75%		60%	60%
No SB involvement	NA		26%	27%	6%		15%	18%
Bifurcation angle (degrees)	<70		47.6 + 17.6	49.9 + 59.9	NA		<60 (87%)	<60 (85%)
Main vessel								
Reference (mm)	3.3 ± 0.41	3.3 ± 0.41	3.08 ± 0.40	3.08 ± 38	2.80 ± 0.3	2.74 ± 0.35	NA	NA
Lesion length (mm)	7.5 ± 7.5	8 ± 8.3	21.7±7.5	20.9 ± 8.2	15.8 ± 8.7	14.7 ± 8.2	NA	NA
Diameter stenosis (%)	50 ± 25	52 ± 24	54.9 ± 24.3	54.9 ± 24.3	68 ± 12	69 ± 12	NA ^a	NAa
Side branch								
Reference (mm)	2.6 ± 0.3	2.6 ± 0.4	2.39 ±0.31	2.38 ± 0.37	2.3 ± 0.31	2.16 ± 0.33	NA	NA
Lesion length (mm)	6.4 ± 4.7	6.0 ± 4.8	10.4 ± 4.1	9.9 ± 4.2	5.9 ± 4.7	5.7 ± 4.2	NA	NA
Diameter stenosis (%)	47 ± 26	46 ± 2	53.1 ± 23.5	54.4 ± 22.3	63 ± 12	61 ± 13	NA ^a	NA ^a

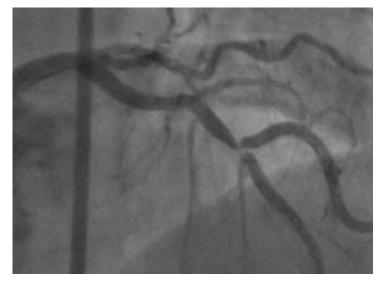
Issam D. Moussa. Catheterization and Cardiovascular Interventions 77:537-545 (2011)

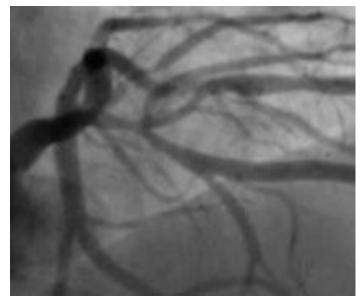
Steigen TK et al. Circulation. 2006;114:1955-1961 Ferenc M et al. Eur Heart J 2008; 29: 2859–2867 Colombo A et al. Circulation. 2009;119:71–78 Hildick-Smith D et al. Circulation. 2010;121:1235-1243

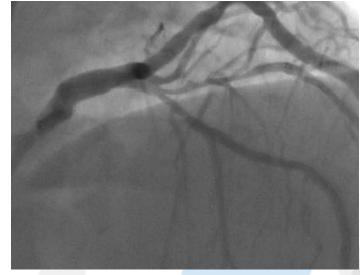

Questions before making a decision how to treat?



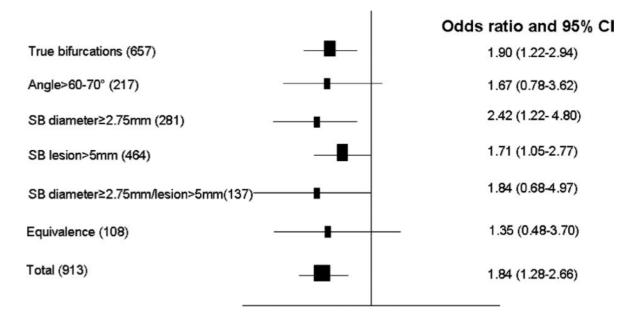
- How large is the SB (diameter, vessel length, and myocardial territory supplied)
- Is the SB ostium diseased? If yes, what is the severity and length of the lesion?
- Is there severe disease in the SB beyond the ostium?
- What is the angle of the SB takeoff? Is it difficult to wire/rewire?
- What is the severity and distribution of the MV lesion?
- What will happen to the SB after MV stenting (mild or significant compromise or occlusion)?
- What are the clinical consequences of SB occlusion (depends on the territory supplied)?




SYNTAX score: 3 vessel disease and 3 vessel disease



Medina 1,1,1 and Medina 1,1,1



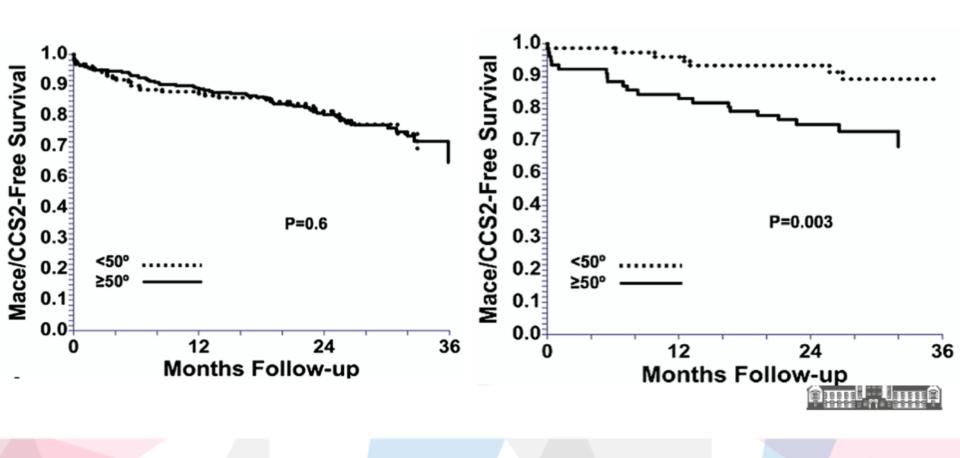
Disadvantages of Medina's classification

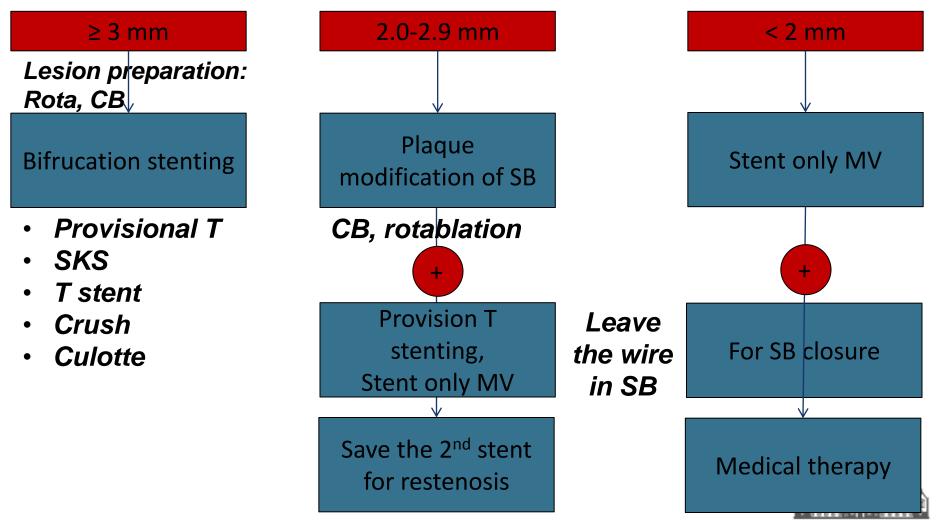
- Medina's classification does not provide a complete description of lesions that may influence the choice of the treatment strategy and the outcome:
 - Presence of calcification
 - Angles between the vessel segments
 - Lesion length, especially in the SB
 - SB diameter
 - Flow conditions

Prognostic value of lesion characteristics NORDIC I + BBC I

Favours Simple Favours Complex

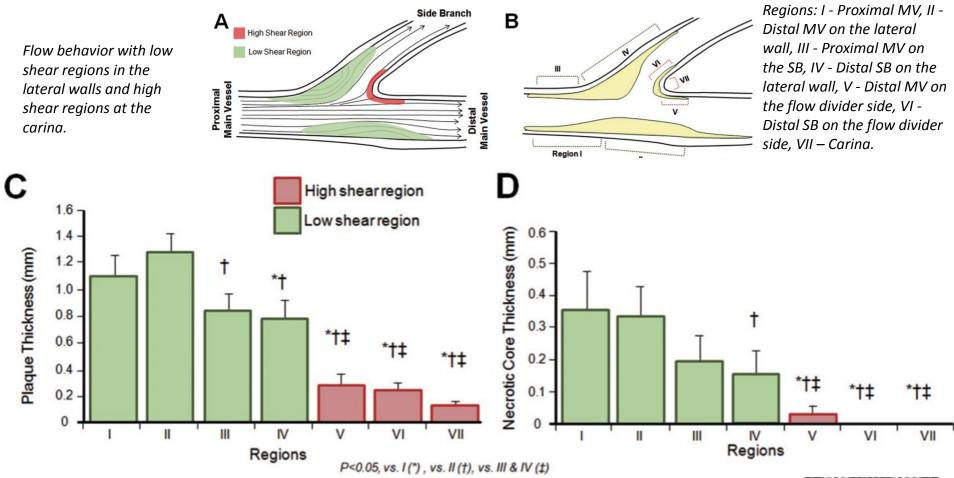
Figure 2. Odds ratio plot of the primary outcome for individual subgroups. Equivalence indicates that the SB is <0.25 mm smaller than the MV. Size of data markers indicates the number of patients in that subgroup. SB indicates side branch; MV, main vessle; CI, confidence interval.


The role of bifurcation angle


Kaplan-Meier curves for MACEs or CCS class ≥2 angina-free survival

MV stenting only

Crush/Culotte stenting



Side Branch Size and Strategy

Sharma SK et al. Cardiol Clin 2010;28:55–70

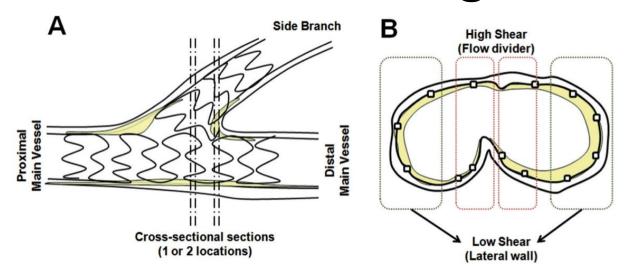
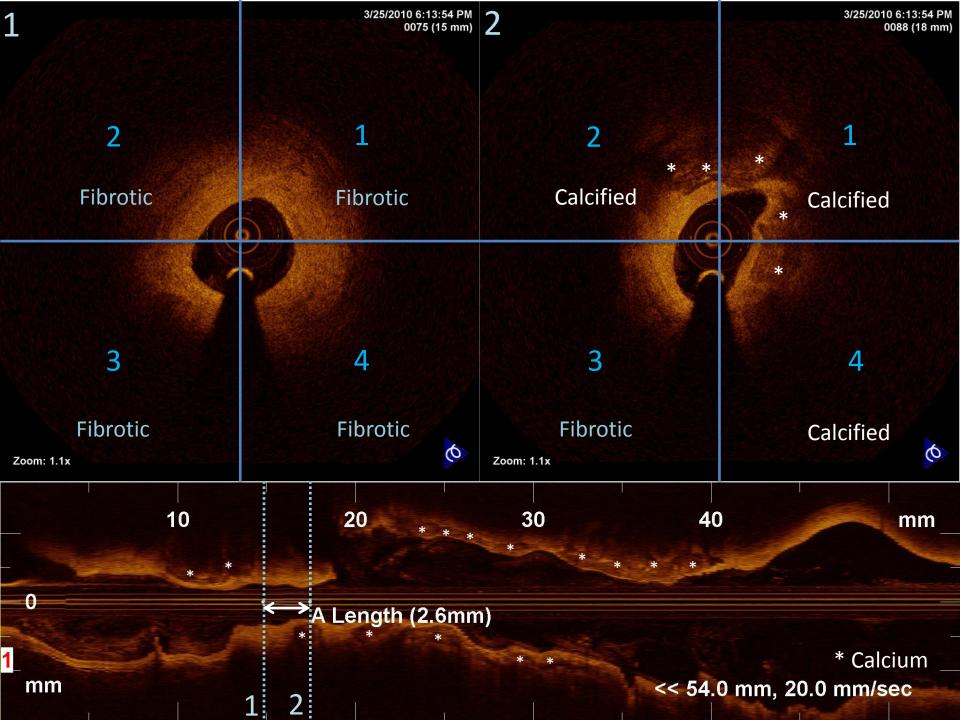
Impact of flow on atheroma in bifurcation

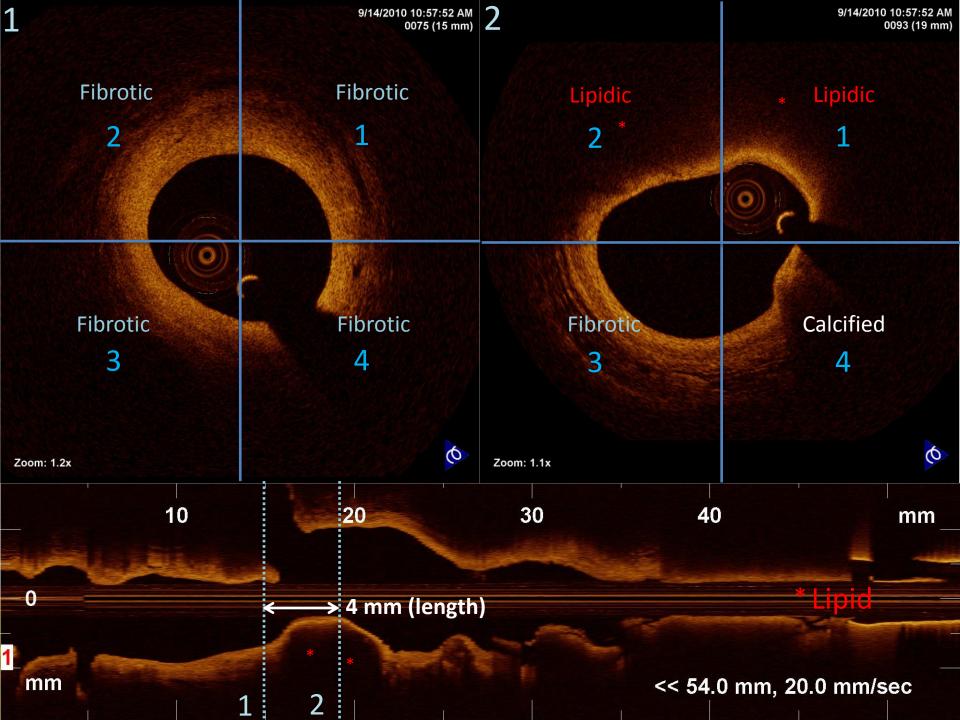
C: Plaque thickness was greater in regions of low shear as compared to high shear.

D: Necrotic core thickness was significantly greater in low shear regions as compared to high shear with absent of necrotic core at the carinal region (VII)

Yazdani SK, Virmani R et al. EuroIntervention. 2010;6 Suppl J: J24-J30

Impact of flow on arterial healing after stenting


Table 2. Morphometric comparison between high shear vs. low shear regions in DES and BMS.

	DES (12 lesion, 17 stents)		p value	BMS (14 les	p value	P value DES vs.		
	High shear (flow divider)	Low shear (lateral walls)		High shear (flow divider)	Low shear (lateral walls)		High shear	Low shear
Neointimal thickness (mm)	0.07 [0.03, 0.15]	0.17 [0.09, 0.23]	0.001	0.26 [0.16, 0.73]	0.44 [0.17, 0.67]	0.25	0.0002	0.004
Fibrin deposition (%Struts)	60 [21, 67]	17 [0, 55]	0.01	8 [0, 33]	3 [0, 21]	0.21	0.008	0.19
Uncovered struts (%Struts)	40 [16, 76]	0 [0, 15]	0.001	0 [0, 21]	0 [0, 0]	0.10	0.004	0.38

DES: drug-eluting stent; BMS: bare metal stent; Values are expressed as median and interquartile range

Yazdani SK, Virmani R et al. EuroIntervention. 2010;6 Suppl J: J24-J30

Consensus from European Bifurcation Club,

- Provisional T stenting remains the gold standard technique for most bifurcations
- Large side branched with ostial disease extending >5 mm from the carina are likely to require a two-stent strategy
- Side branches whose access is particularly challenging should be secured by stenting once accessed
- Bifurcations with angulation > 60 degree between the daughter vessels should be approached with single stent strategies where possible

Conclusions

- The current evidence-base pertaining to PCI in coronary bifurcation lesions is not adequate to inform decision making in all patients, hence a gap still exists between the evidence-base and patient-centered decision-making.
- Bifurcations is the art of geometry, fluid dynamics and rheology. Atherosclerosis, plaque vulnerability and thrombosis are closely associated with the geometric and fluid dynamics factors at the bifurcation.
- Bifurcation stenting should respect geometric rules
- Advances in the current imaging modalities will enable the development of more accurate models for the study of geometry and flow conditions in coronary bifurcations.

Appropriate tools should reach apropriate hands

